Function to detect suspicious outliers based on environmental variables.
Source:R/suspicious_env_outliers.R
suspicious_env_outliers.RdRun outlier.tree to detect suspicious outliers in observations.
Usage
suspicious_env_outliers(
occ,
occ_crs = 4326,
variables,
rm_outliers = FALSE,
seed = 10L,
...,
visualize = TRUE
)Arguments
- occ
(
data.frame,sf,SpatialPointsDataFrame) The occurrence dataset for training. There must be columnxandyfor coordinates if it is a regulardata.frame.- occ_crs
(
numericorcrs) The EPSG number orcrsobject of occurrence CRS. The default value is4326, which is the geographic coordinate system.- variables
(
RasterStackorstars) The stack of environmental variables.- rm_outliers
(
logical) The option to remove the suspicious outliers or not. The default isFALSE.- seed
(
integer) The random seed used in the modeling. It should be an integer. The default is10L.- ...
Other arguments passed to function
outlier.treein packageoutliertree.- visualize
(
logical) IfTRUE, plot the result. The default isTRUE.
Value
(EnvironmentalOutlier) A list that contains
outlier_details (
tibble) A table of outlier details returned from functionoutlier.treein packageoutliertreepts_occ (
sf) Thesfpoints of occurrence. Ifrm_outliersisTRUE, outliers are deleted from points of occurrence. IfFALSE, the full observations are returned.
Details
Please check more details in R documentation of function
outlier.tree in package outliertree and their GitHub.
See also
print.EnvironmentalOutlier, plot.EnvironmentalOutlier
outlier.tree in package outliertree
Examples
library(dplyr)
library(sf)
library(stars)
library(itsdm)
data("occ_virtual_species")
env_vars <- system.file(
'extdata/bioclim_tanzania_10min.tif',
package = 'itsdm') %>% read_stars() %>%
slice('band', c(1, 5, 12))
occ_outliers <- suspicious_env_outliers(
occ = occ_virtual_species, variables = env_vars,
z_outlier = 3.5, outliers_print = 4L, nthreads = 1)
occ_outliers
plot(occ_outliers)