R/suspicious_env_outliers.R
suspicious_env_outliers.Rd
Run outlier.tree
to detect suspicious outliers in observations.
suspicious_env_outliers(
occ,
occ_crs = 4326,
variables,
rm_outliers = FALSE,
seed = 10L,
...,
visualize = TRUE
)
(data.frame
, sf
, SpatialPointsDataFrame
)
The occurrence dataset for training.
There must be column x
and y
for coordinates if it is a regular data.frame
.
(numeric
or crs
) The EPSG number or
crs
object of occurrence CRS.
The default value is 4326
, which is the geographic coordinate system.
(RasterStack
or stars
) The stack of environmental variables.
(logical
) The option to remove the suspicious outliers or not.
The default is FALSE
.
(integer
) The random seed used in the modeling. It should be an
integer. The default is 10L
.
Other arguments passed to function outlier.tree
in
package outliertree
.
(logical
) If TRUE
, plot the result.
The default is TRUE
.
(EnvironmentalOutlier
) A list that contains
Please check more details in R documentation of function
outlier.tree
in package outliertree
and their GitHub.
print.EnvironmentalOutlier
, plot.EnvironmentalOutlier
outlier.tree
in package outliertree
library(dplyr)
library(sf)
library(stars)
library(itsdm)
data("occ_virtual_species")
env_vars <- system.file(
'extdata/bioclim_tanzania_10min.tif',
package = 'itsdm') %>% read_stars() %>%
slice('band', c(1, 5, 12))
occ_outliers <- suspicious_env_outliers(
occ = occ_virtual_species, variables = env_vars,
z_outlier = 3.5, outliers_print = 4L, nthreads = 1)
occ_outliers
plot(occ_outliers)