Detect areas influenced by a changing environment variable.
Source:R/detect_envi_change.R
detect_envi_change.RdUse shapley values to detect the potential areas that will impact the species distribution. It only works on continuous variables.
Usage
detect_envi_change(
model,
var_occ,
variables,
target_var,
bins = NULL,
shap_nsim = 10,
seed = 10,
var_future = NULL,
variables_future = NULL,
pfun = .pfun_shap,
method = "gam",
formula = y ~ s(x)
)Arguments
- model
(
isolation_forestor other model). It could be the itemmodelofPOIsotreemade by functionisotree_po. It also could be other user-fitted models as long as thepfuncan work on it.- var_occ
(
data.frame,tibble) Thedata.framestyle table that include values of environmental variables at occurrence locations.- variables
(
stars) Thestarsof environmental variables. It should have multipleattributesinstead ofdims. If you haverasterobject instead, you could usest_as_starsto convert it tostarsor useread_starsdirectly read source data as astars. You also could use itemvariablesofPOIsotreemade by functionisotree_po.- target_var
(
character) The selected variable to process.- bins
(
integer) The bin to cut the target variable for the analysis. If it isNULL, no cut to apply. The default isNULL.- shap_nsim
(
integer) The number of Monte Carlo repetitions in SHAP method to use for estimating each Shapley value. See details in documentation of functionexplainin packagefastshap. When the number of variables is large, a smaller shap_nsim could be used. Be cautious that making SHAP-based spatial dependence will be slow because of Monte-Carlo computation for all pixels. But it is worth the time because it is much more informative. See details in documentation of functionexplain. in packagefastshap. The default is 10. Usually a value 10 - 20 is enough.- seed
(
integer) The seed for any random progress. The default is10L.- var_future
(
numericorstars) A number to apply to the current variable or astarslayer as the future variable. It can beNULLifvariables_futureis set.- variables_future
(
stars) Astarsraster stack for future variables. It could beNULLifvar_futureis set.- pfun
(
function) The predict function that requires two arguments,objectandnewdata. It is only required whenmodelis notisolation_forest. The default is the wrapper function designed for iForest model initsdm.- method
Argument passed on to
geom_smoothto fit the line. Note that the same arguments will be used for all target variables. User could set variable one by one to set the arguments separately. Default value is "gam".- formula
Argument passed on to
geom_smoothto fit the line. Note that the same arguments will be used for all target variables. User could set variable one by one to set the arguments separately. The default is y ~ s(x).
Value
(EnviChange) A list of
A figure of fitted variable curve
A map of variable contribiution change
Tipping points of variable contribution
A
starsof variable contribution under current and future condition, and the detected changes
Details
The values show how changes in environmental variable affects the modeling prediction in space. These maps could help to answer questions of where will be affected by a changing variable.
Examples
# Using a pseudo presence-only occurrence dataset of
# virtual species provided in this package
library(dplyr)
library(sf)
library(stars)
library(itsdm)
#'
# Prepare data
data("occ_virtual_species")
obs_df <- occ_virtual_species %>% filter(usage == "train")
eval_df <- occ_virtual_species %>% filter(usage == "eval")
x_col <- "x"
y_col <- "y"
obs_col <- "observation"
#'
# Format the observations
obs_train_eval <- format_observation(
obs_df = obs_df, eval_df = eval_df,
x_col = x_col, y_col = y_col, obs_col = obs_col,
obs_type = "presence_only")
#'
env_vars <- system.file(
'extdata/bioclim_tanzania_10min.tif',
package = 'itsdm') %>% read_stars() %>%
slice('band', c(1, 12))
#'
# With imperfect_presence mode,
mod <- isotree_po(
obs_mode = "imperfect_presence",
obs = obs_train_eval$obs,
obs_ind_eval = obs_train_eval$eval,
variables = env_vars, ntrees = 5,
sample_size = 0.8, ndim = 1L,
nthreads = 1,
seed = 123L, response = FALSE,
spatial_response = FALSE,
check_variable = FALSE)
# Use a fixed value
bio1_changes <- detect_envi_change(
model = mod$model,
var_occ = mod$vars_train,
variables = mod$variables,
shap_nsim = 1,
target_var = "bio1",
var_future = 5)
if (FALSE) { # \dontrun{
# Use a future layer
## Read the future Worldclim variables
future_vars <- system.file(
'extdata/future_bioclim_tanzania_10min.tif',
package = 'itsdm') %>% read_stars() %>%
split() %>% select(bioc1, bioc12)
# Rename the bands
names(future_vars) <- paste0("bio", c(1, 12))
## Just use the target future variable
climate_changes <- detect_envi_change(
model = mod$model,
var_occ = mod$vars_train,
variables = mod$variables,
shap_nsim = 1,
target_var = "bio1",
var_future = future_vars %>% select("bio1"))
## Use the whole future variable tack
bio12_changes <- detect_envi_change(
model = mod$model,
var_occ = mod$vars_train,
variables = mod$variables,
shap_nsim = 1,
target_var = "bio12",
variables_future = future_vars)
print(bio12_changes)
##### Use Random Forest model as an external model ########
library(randomForest)
# Prepare data
data("occ_virtual_species")
obs_df <- occ_virtual_species %>%
filter(usage == "train")
env_vars <- system.file(
'extdata/bioclim_tanzania_10min.tif',
package = 'itsdm') %>% read_stars() %>%
slice('band', c(1, 5, 12)) %>%
split()
model_data <- stars::st_extract(
env_vars, at = as.matrix(obs_df %>% select(x, y))) %>%
as.data.frame()
names(model_data) <- names(env_vars)
model_data <- model_data %>%
mutate(occ = obs_df[['observation']])
model_data$occ <- as.factor(model_data$occ)
mod_rf <- randomForest(
occ ~ .,
data = model_data,
ntree = 200)
pfun <- function(X.model, newdata) {
# for data.frame
predict(X.model, newdata, type = "prob")[, "1"]
}
# Use a fixed value
bio5_changes <- detect_envi_change(
model = mod_rf,
var_occ = model_data %>% select(-occ),
variables = env_vars,
target_var = "bio5",
bins = 20,
var_future = 5,
pfun = pfun)
plot(bio5_changes)
} # }